Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
Werkzeug | 0.16.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
Werkzeug | 0.16.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
Werkzeug | 0.16.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
Werkzeug | 0.16.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
Werkzeug | 0.16.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
pip | 19.2.3 | <23.3 |
show Affected versions of Pip are vulnerable to Command Injection. When installing a package from a Mercurial VCS URL (ie "pip install hg+...") with pip prior to v23.3, the specified Mercurial revision could be used to inject arbitrary configuration options to the "hg clone" call (ie "--config"). Controlling the Mercurial configuration can modify how and which repository is installed. This vulnerability does not affect users who aren't installing from Mercurial. |
pip | 19.2.3 | <21.1 |
show A flaw was found in python-pip in the way it handled Unicode separators in git references. A remote attacker could possibly use this issue to install a different revision on a repository. The highest threat from this vulnerability is to data integrity. |
pip | 19.2.3 | <21.1 |
show An issue was discovered in Pip (all versions) because it installs the version with the highest version number, even if the user had intended to obtain a private package from a private index. This only affects use of the --extra-index-url option, and exploitation requires that the package does not already exist in the public index (and thus the attacker can put the package there with an arbitrary version number). A warning was added about this behavior in version 21.1. NOTE: it has been reported that this is intended functionality and the user is responsible for using --extra-index-url securely. |
pip | 19.2.3 | <21.1 |
show Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security issues. |
pip | 19.2.3 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
wheel | 0.33.6 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
Sphinx | 2.2.0 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
Sphinx | 2.2.0 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
twine | 1.15.0 | <2.0.0 |
show Twine 2.0.0 updates requests to 2.20 (or later) to include a security fix. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behavior. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.4 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.4 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.4 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.4 | >=1.25.2,<=1.25.7 |
show The _encode_invalid_chars function in util/url.py in the urllib3 library 1.25.2 through 1.25.7 for Python allows a denial of service (CPU consumption) because of an inefficient algorithm. The percent_encodings array contains all matches of percent encodings. It is not deduplicated. For a URL of length N, the size of percent_encodings may be up to O(N). The next step (normalize existing percent-encoded bytes) also takes up to O(N) for each step, so the total time is O(N^2). If percent_encodings were deduplicated, the time to compute _encode_invalid_chars would be O(kN), where k is at most 484 ((10+6*2)^2). See: CVE-2020-7212. |
urllib3 | 1.25.4 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.4 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
requests | 2.22.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.22.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.22.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
certifi | 2019.9.11 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
certifi | 2019.9.11 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
pytest-runner | 5.1 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
https://pyup.io/repos/github/umeboshi2/hattie/python-3-shield.svg
[](https://pyup.io/repos/github/umeboshi2/hattie/)
.. image:: https://pyup.io/repos/github/umeboshi2/hattie/python-3-shield.svg :target: https://pyup.io/repos/github/umeboshi2/hattie/ :alt: Python 3
<a href="https://pyup.io/repos/github/umeboshi2/hattie/"><img src="https://pyup.io/repos/github/umeboshi2/hattie/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/umeboshi2/hattie/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/umeboshi2/hattie/
{<img src="https://pyup.io/repos/github/umeboshi2/hattie/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/umeboshi2/hattie/]
https://pyup.io/repos/github/umeboshi2/hattie/shield.svg
[](https://pyup.io/repos/github/umeboshi2/hattie/)
.. image:: https://pyup.io/repos/github/umeboshi2/hattie/shield.svg :target: https://pyup.io/repos/github/umeboshi2/hattie/ :alt: Updates
<a href="https://pyup.io/repos/github/umeboshi2/hattie/"><img src="https://pyup.io/repos/github/umeboshi2/hattie/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/umeboshi2/hattie/shield.svg(Updates)!:https://pyup.io/repos/github/umeboshi2/hattie/
{<img src="https://pyup.io/repos/github/umeboshi2/hattie/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/umeboshi2/hattie/]