| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
| django | 5.0.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
| django | 5.0.7 | >=5.2a1,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
| django | 5.0.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
| django | 5.0.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
| django | 5.0.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
| django | 5.0.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
| django | 5.0.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
| django | 5.0.7 | >=5.0a1,<5.0.14 , >=5.1a1,<5.1.8 |
show An issue was discovered in Django 5.1 before 5.1.8 and 5.0 before 5.0.14. The NFKC normalization is slow on Windows. As a consequence, django.contrib.auth.views.LoginView, django.contrib.auth.views.LogoutView, and django.views.i18n.set_language are subject to a potential denial-of-service attack via certain inputs with a very large number of Unicode characters. |
| django | 5.0.7 | <4.2.24 , >=5.0a1,<5.1.12 , >=5.2a1,<5.2.6 |
show Affected versions of the Django package are vulnerable to SQL Injection due to insufficient input sanitization in FilteredRelation column aliases. The FilteredRelation class fails to properly validate or escape column alias names when they are provided through dictionary expansion as keyword arguments to QuerySet.annotate() or QuerySet.alias() methods, allowing malicious SQL code to be injected directly into the generated database queries. |
| django | 5.0.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
| django | 5.0.7 | >=5.0,<5.0.8 , >=4.2,<4.2.15 |
show Affected versions of the Django package are vulnerable to Denial of Service due to uncontrolled memory consumption in the floatformat template filter. The floatformat filter fails to handle string representations of numbers in scientific notation with large exponents efficiently, causing excessive memory allocation when rendering such inputs. An attacker can exploit this by supplying a template with a floatformat filter applied to a specially crafted scientific notation number, leading to memory exhaustion and service unavailability. |
| django | 5.0.7 | >=5.1a1,<5.1.5 , >=5.0a1,<5.0.11 , >=4.2a1,<4.2.18 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
| django | 5.0.7 | >=4.2a1,< 4.2.20 , >=5.0a1,< 5.0.13 , >=5.1a1,< 5.1.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
| gunicorn | 22.0.0 | >=22.0.0,<23.0.0 |
show A vulnerability in Gunicorn allowed the TolerateDangerousFraming setting to process conflicting headers (Transfer-Encoding and Content-Length) and dangerous characters in HTTP header fields. This could lead to HTTP request smuggling and header injection attacks. The issue was resolved by removing this setting and enforcing stricter header validation. Note: It happens due to an incomplete fix for CVE-2024-1135. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| jinja2 | 3.1.4 | >=3.0.0a1,<3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
| jinja2 | 3.1.4 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
| jinja2 | 3.1.4 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
https://pyup.io/repos/github/cookiecutter/cookiecutter-django/python-3-shield.svg
[](https://pyup.io/repos/github/cookiecutter/cookiecutter-django/)
.. image:: https://pyup.io/repos/github/cookiecutter/cookiecutter-django/python-3-shield.svg
:target: https://pyup.io/repos/github/cookiecutter/cookiecutter-django/
:alt: Python 3
<a href="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/"><img src="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/cookiecutter/cookiecutter-django/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/cookiecutter/cookiecutter-django/
{<img src="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/cookiecutter/cookiecutter-django/]
https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg
[](https://pyup.io/repos/github/cookiecutter/cookiecutter-django/)
.. image:: https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg
:target: https://pyup.io/repos/github/cookiecutter/cookiecutter-django/
:alt: Updates
<a href="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/"><img src="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg(Updates)!:https://pyup.io/repos/github/cookiecutter/cookiecutter-django/
{<img src="https://pyup.io/repos/github/cookiecutter/cookiecutter-django/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/cookiecutter/cookiecutter-django/]