| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
| requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
| requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
| requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
| requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
| ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
| sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
| sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
| wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
| urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.25.8 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.25.8 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
| requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
| requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg
[](https://pyup.io/repos/github/aergoio/herapy/)
.. image:: https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg
:target: https://pyup.io/repos/github/aergoio/herapy/
:alt: Python 3
<a href="https://pyup.io/repos/github/aergoio/herapy/"><img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/aergoio/herapy/
{<img src="https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/aergoio/herapy/]
https://pyup.io/repos/github/aergoio/herapy/shield.svg
[](https://pyup.io/repos/github/aergoio/herapy/)
.. image:: https://pyup.io/repos/github/aergoio/herapy/shield.svg
:target: https://pyup.io/repos/github/aergoio/herapy/
:alt: Updates
<a href="https://pyup.io/repos/github/aergoio/herapy/"><img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/aergoio/herapy/shield.svg(Updates)!:https://pyup.io/repos/github/aergoio/herapy/
{<img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/aergoio/herapy/]