Package | Installed | Affected | Info |
---|---|---|---|
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
grpcio | 1.54.2 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.54.2 | >=1.55.0,<1.55.3 , >=1.54.0,<1.54.3 , >=1.53.0,<1.53.2 |
show Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. |
grpcio | 1.54.2 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
grpcio | 1.54.2 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.54.2 | >=1.55.0,<1.55.3 , >=1.54.0,<1.54.3 , >=1.53.0,<1.53.2 |
show Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. |
grpcio | 1.54.2 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
grpcio | 1.48.2 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.48.2 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.48.2 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.48.2 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.48.2 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.48.2 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.48.2 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.48.2 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
grpcio | 1.48.2 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.48.2 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.48.2 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.48.2 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.48.2 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.48.2 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.48.2 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.48.2 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
grpcio | 1.44.0 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.44.0 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
grpcio | 1.44.0 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.44.0 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
ecdsa | 0.18.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.18.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
grpcio | 1.44.0 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.44.0 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
grpcio | 1.44.0 | <1.53.0 |
show When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0rc1,<1.54.3 , >=1.55.0rc1,<1.55.3 , >=1.56.0rc1,<1.56.2 |
show Grpcio 1.53.2, 1.54.3, 1.55.3 and 1.56.2 include a fix for CVE-2023-4785: Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. https://github.com/grpc/grpc/pull/33656 |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Connection Confusion vulnerability. When gRPC HTTP2 stack raised a header size exceeded error, it skipped parsing the rest of the HPACK frame. This caused any HPACK table mutations to also be skipped, resulting in a desynchronization of HPACK tables between sender and receiver. If leveraged, say, between a proxy and a backend, this could lead to requests from the proxy being interpreted as containing headers from different proxy clients - leading to an information leak that can be used for privilege escalation or data exfiltration. https://github.com/advisories/GHSA-cfgp-2977-2fmm |
grpcio | 1.44.0 | <1.53.0 |
show Grpcio 1.53.0 includes a fix for a Reachable Assertion vulnerability. https://github.com/advisories/GHSA-6628-q6j9-w8vg |
grpcio | 1.44.0 | <1.53.0 |
show There exists an vulnerability causing an abort() to be called in gRPC. The following headers cause gRPC's C++ implementation to abort() when called via http2: te: x (x != trailers) :scheme: x (x != http, https) grpclb_client_stats: x (x == anything) On top of sending one of those headers, a later header must be sent that gets the total header size past 8KB. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.0 |
show gRPC contains a vulnerability whereby a client can cause a termination of connection between a HTTP2 proxy and a gRPC server: a base64 encoding error for `-bin` suffixed headers will result in a disconnection by the gRPC server, but is typically allowed by HTTP2 proxies. |
grpcio | 1.44.0 | <1.53.2 , >=1.54.0,<1.54.3 , >=1.55.0,<1.55.2 , >=1.56.0,<1.56.2 |
show gRPC has a vulnerability linked to hpack table accounting errors, causing potential unwanted disconnects between clients and servers. Identified vectors include unbounded memory buffering and CPU consumption within the HPACK parser, leading to denial-of-service (DOS) attacks. The CPU issue stems from excessive copying, resulting in inefficient parsing. Memory issues arise from delayed header size checks, allowing large strings to be buffered, and a quirk in HPACK's integer encoding, permitting infinite zero-padding. Additionally, metadata overflow checks per frame could enable infinite buffering, compromising gRPC's stability and security. |
requests | 2.31.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
cryptography | 41.0.3 | >=38.0.0,<42.0.4 |
show cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Starting in version 38.0.0 and before version 42.0.4, if `pkcs12.serialize_key_and_certificates` is called with both a certificate whose public key did not match the provided private key and an `encryption_algorithm` with `hmac_hash` set (via `PrivateFormat.PKCS12.encryption_builder().hmac_hash(...)`, then a NULL pointer dereference would occur, crashing the Python process. This has been resolved in version 42.0.4, the first version in which a `ValueError` is properly raised. |
cryptography | 41.0.3 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 41.0.3 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 41.0.3 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 41.0.3 | >=37.0.0,<43.0.1 |
show Affected versions of Cryptography have a vulnerable statically linked copy of OpenSSL included in cryptography wheels. |
cryptography | 41.0.3 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 41.0.3 | >=35.0.0,<42.0.6 |
show The `cryptography` library updates its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, certain non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions, leading to a potential Denial of Service (DoS) attack. The issue arises when the `SSL_OP_NO_TICKET` option is used without early data support and default anti-replay protection. Under these conditions, the session cache can become misconfigured, preventing it from flushing properly and causing it to grow indefinitely. A malicious client can exploit this scenario to trigger a DoS attack, although it can also occur accidentally during normal operations. This vulnerability affects only TLS servers supporting TLSv1.3 and does not impact TLS clients. Additionally, the FIPS modules in versions 3.2, 3.1, and 3.0, as well as OpenSSL 1.0.2, are not affected by this issue. |
cryptography | 41.0.3 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 41.0.3 | >=35.0.0,<42.0.0 |
show Cryptography 42.0.0 updates its bundled dependency 'OpenSSL' so to include the commit fix for CVE-2023-6237: Checking excessively long invalid RSA public keys may take a long time. |
cryptography | 41.0.3 | >=35.0.0,<42.0.2 |
show Versions of Cryptograph starting from 35.0.0 are susceptible to a security flaw in the POLY1305 MAC algorithm on PowerPC CPUs, which allows an attacker to disrupt the application's state. This disruption might result in false calculations or cause a denial of service. The vulnerability's exploitation hinges on the attacker's ability to alter the algorithm's application and the dependency of the software on non-volatile XMM registers. https://github.com/pyca/cryptography/commit/89d0d56fb104ac4e0e6db63d78fc22b8c53d27e9 |
cryptography | 41.0.3 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 41.0.3 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 41.0.3 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
zipp | 3.1.0 | <3.19.1 |
show A Denial of Service (DoS) vulnerability exists in the jaraco/zipp library. The vulnerability is triggered when processing a specially crafted zip file that leads to an infinite loop. This issue also impacts the zipfile module of CPython, as features from the third-party zipp library are later merged into CPython, and the affected code is identical in both projects. The infinite loop can be initiated through the use of functions affecting the `Path` module in both zipp and zipfile, such as `joinpath`, the overloaded division operator, and `iterdir`. Although the infinite loop is not resource exhaustive, it prevents the application from responding. |
tqdm | 4.43.0 | <4.66.3 |
show Tqdm version 4.66.3 addresses CVE-2024-34062, a vulnerability where optional non-boolean CLI arguments like `--delim`, `--buf-size`, and `--manpath` were passed through Python's `eval`, allowing for arbitrary code execution. This security risk, only locally exploitable, has been mitigated in this release. Users are advised to upgrade to version 4.66.3 immediately as there are no workarounds for this issue. |
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
virtualenv | 20.0.11 | <20.21.0 |
show Virtualenv version 20.21.0 addresses a race condition in `virtualenv.cli_run` where a `FileNotFoundError` could occur for a JSON file in `pypa/virtualenv/py_info/1`. This error happens if the underlying interpreter is updated, causing the JSON file to be deleted and rewritten. |
virtualenv | 20.0.11 | <20.26.6 |
show Affected versions of the virtualenv package are vulnerable to command injection. This vulnerability could allow an attacker to execute arbitrary commands by exploiting improperly quoted string placeholders in activation scripts. The vulnerable functions include various shell activation scripts where placeholders like __VIRTUAL_ENV__ are used. The exploitability depends on the ability to control the input to these placeholders. Users are advised to update to the version where a quoting mechanism has been implemented to mitigate this risk. This vulnerability is specific to environments where shell scripts are used for virtual environment activation. The issue is tracked under CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection'). |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.11.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
zipp | 3.1.0 | <3.19.1 |
show A Denial of Service (DoS) vulnerability exists in the jaraco/zipp library. The vulnerability is triggered when processing a specially crafted zip file that leads to an infinite loop. This issue also impacts the zipfile module of CPython, as features from the third-party zipp library are later merged into CPython, and the affected code is identical in both projects. The infinite loop can be initiated through the use of functions affecting the `Path` module in both zipp and zipfile, such as `joinpath`, the overloaded division operator, and `iterdir`. Although the infinite loop is not resource exhaustive, it prevents the application from responding. |
tqdm | 4.43.0 | <4.66.3 |
show Tqdm version 4.66.3 addresses CVE-2024-34062, a vulnerability where optional non-boolean CLI arguments like `--delim`, `--buf-size`, and `--manpath` were passed through Python's `eval`, allowing for arbitrary code execution. This security risk, only locally exploitable, has been mitigated in this release. Users are advised to upgrade to version 4.66.3 immediately as there are no workarounds for this issue. |
ecdsa | 0.19.0 | >=0 |
show Ecdsa does not protects against side-channel attacks. This is because Python does not provide side-channel secure primitives (with the exception of hmac.compare_digest()), making side-channel secure programming impossible. For a sophisticated attacker observing just one operation with a private key will be sufficient to completely reconstruct the private key. https://pypi.org/project/ecdsa/#Security |
ecdsa | 0.19.0 | >=0 |
show The python-ecdsa library, which implements ECDSA cryptography in Python, is vulnerable to the Minerva attack (CVE-2024-23342). This vulnerability arises because scalar multiplication is not performed in constant time, affecting ECDSA signatures, key generation, and ECDH operations. ECDSA signature verification remains unaffected. The project maintainers have stated that there is no plan to release a fix for this vulnerability, citing their security policy: "As stated in the security policy, side-channel vulnerabilities are outside the scope of the project. This is not due to a lack of interest in side-channel secure implementations but rather because the main goal of the project is to be pure Python. Implementing side-channel-free code in pure Python is impossible. Therefore, we do not plan to release a fix for this vulnerability." NOTE: The specs we include in this advisory differ from the publicly available on other sources. That's because research by Safety CLI Cybersecurity Team confirms that there is no plan to address this vulnerability. |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
wheel | 0.34.2 | <0.38.1 |
show Wheel 0.38.1 includes a fix for CVE-2022-40898: An issue discovered in Python Packaging Authority (PyPA) Wheel 0.37.1 and earlier allows remote attackers to cause a denial of service via attacker controlled input to wheel cli. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
virtualenv | 20.0.11 | <20.21.0 |
show Virtualenv version 20.21.0 addresses a race condition in `virtualenv.cli_run` where a `FileNotFoundError` could occur for a JSON file in `pypa/virtualenv/py_info/1`. This error happens if the underlying interpreter is updated, causing the JSON file to be deleted and rewritten. |
virtualenv | 20.0.11 | <20.26.6 |
show Affected versions of the virtualenv package are vulnerable to command injection. This vulnerability could allow an attacker to execute arbitrary commands by exploiting improperly quoted string placeholders in activation scripts. The vulnerable functions include various shell activation scripts where placeholders like __VIRTUAL_ENV__ are used. The exploitability depends on the ability to control the input to these placeholders. Users are advised to update to the version where a quoting mechanism has been implemented to mitigate this risk. This vulnerability is specific to environments where shell scripts are used for virtual environment activation. The issue is tracked under CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection'). |
https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg
[](https://pyup.io/repos/github/aergoio/herapy/)
.. image:: https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg :target: https://pyup.io/repos/github/aergoio/herapy/ :alt: Python 3
<a href="https://pyup.io/repos/github/aergoio/herapy/"><img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/aergoio/herapy/
{<img src="https://pyup.io/repos/github/aergoio/herapy/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/aergoio/herapy/]
https://pyup.io/repos/github/aergoio/herapy/shield.svg
[](https://pyup.io/repos/github/aergoio/herapy/)
.. image:: https://pyup.io/repos/github/aergoio/herapy/shield.svg :target: https://pyup.io/repos/github/aergoio/herapy/ :alt: Updates
<a href="https://pyup.io/repos/github/aergoio/herapy/"><img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/aergoio/herapy/shield.svg(Updates)!:https://pyup.io/repos/github/aergoio/herapy/
{<img src="https://pyup.io/repos/github/aergoio/herapy/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/aergoio/herapy/]