Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
babel | 2.8.0 | <2.9.1 |
show Babel 2.9.1 includes a fix for CVE-2021-42771: Babel.Locale in Babel before 2.9.1 allows attackers to load arbitrary locale .dat files (containing serialized Python objects) via directory traversal, leading to code execution. https://github.com/python-babel/babel/pull/782 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
ipython | 7.18.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
ipython | 7.18.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
urllib3 | 1.25.10 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.10 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.10 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
urllib3 | 1.25.10 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
pytest-runner | 5.2 | >0 |
show Pytest-runner depends on deprecated features of setuptools and relies on features that break security mechanisms in pip. For example ‘setup_requires’ and ‘tests_require’ bypass pip --require-hashes. See also pypa/setuptools#1684. It is recommended that you: - Remove 'pytest-runner' from your setup_requires, preferably removing the setup_requires option. - Remove 'pytest' and any other testing requirements from tests_require, preferably removing the tests_requires option. - Select a tool to bootstrap and then run tests such as tox. https://github.com/pytest-dev/pytest-runner/blob/289a77b179535d8137118e3b8591d9e727130d6d/README.rst |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
pylint | 2.6.0 | <2.7.0 |
show Pylint 2.7.0 includes a fix for vulnerable regular expressions in 'pyreverse'. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pylint | 2.6.0 | <2.13.0 |
show Pylint 2.13.0 fixes a crash when using the doc_params extension. https://github.com/PyCQA/pylint/issues/5322 |
pylint | 2.6.0 | >=0,<2.6.1 |
show Pylint before 2.6.1 is susceptible to a Regular Expression Denial of Service (ReDoS) vulnerability due to issues in its pyreverse component. This issue arises from certain regular expressions in pyreverse that can be exploited by causing catastrophic backtracking, significantly slowing down the service by forcing it to take a disproportionate amount of time to process inputs. This vulnerability allows attackers to use specially crafted inputs that increase the processing time exponentially, potentially leading to a service becoming inaccessible to legitimate users. https://github.com/pylint-dev/pylint/commit/5405dd5115d598fa69e49538d50ec79202b1b52e |
pyyaml | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
py | 1.9.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
py | 1.9.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
jinja2 | 2.11.2 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.11.2 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.11.2 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.11.2 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.11.2 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.11.2 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
Package | Installed | Affected | Info |
---|---|---|---|
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 3.1 | >=3.1,<41.0.6 |
show Affected versions of Cryptography are vulnerable to NULL-dereference when loading PKCS7 certificates. Calling 'load_pem_pkcs7_certificates' or 'load_der_pkcs7_certificates' could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. |
cryptography | 3.1 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 3.1 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 3.1 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 3.1 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 3.1 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 3.1 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 3.1 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 3.1 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 3.1 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 3.1 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 3.1 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 3.1 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 3.1 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
https://pyup.io/repos/github/rbpatt2019/ToDonePy/python-3-shield.svg
[](https://pyup.io/repos/github/rbpatt2019/ToDonePy/)
.. image:: https://pyup.io/repos/github/rbpatt2019/ToDonePy/python-3-shield.svg :target: https://pyup.io/repos/github/rbpatt2019/ToDonePy/ :alt: Python 3
<a href="https://pyup.io/repos/github/rbpatt2019/ToDonePy/"><img src="https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/rbpatt2019/ToDonePy/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/rbpatt2019/ToDonePy/
{<img src="https://pyup.io/repos/github/rbpatt2019/ToDonePy/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/rbpatt2019/ToDonePy/]
https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg
[](https://pyup.io/repos/github/rbpatt2019/ToDonePy/)
.. image:: https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg :target: https://pyup.io/repos/github/rbpatt2019/ToDonePy/ :alt: Updates
<a href="https://pyup.io/repos/github/rbpatt2019/ToDonePy/"><img src="https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg(Updates)!:https://pyup.io/repos/github/rbpatt2019/ToDonePy/
{<img src="https://pyup.io/repos/github/rbpatt2019/ToDonePy/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/rbpatt2019/ToDonePy/]