Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
ipywidgets | 7.5.1 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.1 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
ipython | 7.15.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.15.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
ipywidgets | 7.5.1 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.1 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
ipython | 7.15.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.15.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
ipywidgets | 7.5.1 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.1 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
cryptography | 2.9.2 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 2.9.2 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 2.9.2 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 2.9.2 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 2.9.2 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 2.9.2 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 2.9.2 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 2.9.2 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 2.9.2 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 2.9.2 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 2.9.2 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 2.9.2 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-34141: An incomplete string comparison in the numpy.core component in NumPy before 1.22.0 allows attackers to trigger slightly incorrect copying by constructing specific string objects. NOTE: the vendor states that this reported code behavior is "completely harmless." https://github.com/numpy/numpy/issues/18993 |
numpy | 1.18.5 | <1.22.2 |
show Numpy 1.22.2 includes a fix for CVE-2021-41495: Null Pointer Dereference vulnerability exists in numpy.sort in NumPy in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays. NOTE: While correct that validation is missing, an error can only occur due to an exhaustion of memory. If the user can exhaust memory, they are already privileged. Further, it should be practically impossible to construct an attack which can target the memory exhaustion to occur at exactly this place. NOTE2: The specs we include in this advisory differ from the publicly available on other sources. For example, the advisory posted by the NVD indicate that versions up to and including 1.19.0 are affected. However, research by Safety CLI Cybersecurity confirms that the vulnerability remained unaddressed until version 1.22.2. |
numpy | 1.18.5 | <1.21.0rc1 |
show Numpy 1.21.0rc1 includes a fix for CVE-2021-33430: A Buffer Overflow vulnerability in the PyArray_NewFromDescr_int function of ctors.c when specifying arrays of large dimensions (over 32) from Python code, which could let a malicious user cause a Denial of Service. NOTE: The vendor does not agree this is a vulnerability. In (very limited) circumstances a user may be able provoke the buffer overflow, the user is most likely already privileged to at least provoke denial of service by exhausting memory. Triggering this further requires the use of uncommon API (complicated structured dtypes), which is very unlikely to be available to an unprivileged user. https://github.com/numpy/numpy/issues/18939 |
numpy | 1.18.5 | <1.22.0 |
show Numpy 1.22.0 includes a fix for CVE-2021-41496: Buffer overflow in the array_from_pyobj function of fortranobject.c, which allows attackers to conduct a Denial of Service attacks by carefully constructing an array with negative values. NOTE: The vendor does not agree this is a vulnerability; the negative dimensions can only be created by an already privileged user (or internally). https://github.com/numpy/numpy/issues/19000 |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
ipython | 7.15.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.15.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
ipywidgets | 7.5.1 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.1 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
cryptography | 2.9.2 | <42.0.2 |
show The cryptography library has updated its OpenSSL dependency in CI due to security concerns. This vulnerability arises when processing maliciously formatted PKCS12 files, which can cause OpenSSL to crash, leading to a potential Denial of Service (DoS) attack. PKCS12 files, often containing certificates and keys, may come from untrusted sources. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly handle these cases, resulting in a NULL pointer dereference and subsequent crash. Applications using OpenSSL APIs, such as PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes(), and PKCS12_newpass(), are vulnerable if they process PKCS12 files from untrusted sources. Although a similar issue in SMIME_write_PKCS7() was fixed, it is not considered significant for security as it pertains to data writing. This issue does not affect the FIPS modules in versions 3.2, 3.1, and 3.0. |
cryptography | 2.9.2 | <41.0.4 |
show Cryptography 41.0.4 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3, that includes a security fix. https://github.com/pyca/cryptography/commit/fc11bce6930e591ce26a2317b31b9ce2b3e25512 |
cryptography | 2.9.2 | <42.0.5 |
show Cryptography version 42.0.5 introduces a limit on the number of name constraint checks during X.509 path validation to prevent denial of service attacks. https://github.com/pyca/cryptography/commit/4be53bf20cc90cbac01f5f94c5d1aecc5289ba1f |
cryptography | 2.9.2 | <3.3 |
show Cryptography 3.3 no longer allows loading of finite field Diffie-Hellman parameters of less than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports smaller sizes. These keys were already wildly insecure and should not have been used in any application outside of testing. https://github.com/pyca/cryptography/pull/5592 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <=3.2 |
show Cryptography 3.2 and prior are vulnerable to Bleichenbacher timing attacks in the RSA decryption API, via timed processing of valid PKCS#1 v1.5 ciphertext. |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230719.txt |
cryptography | 2.9.2 | <42.0.0 |
show Affected versions of Cryptography may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. |
cryptography | 2.9.2 | <42.0.0 |
show Cryptography starting from version 42.0.0 updates its CI configurations to use newer versions of BoringSSL or OpenSSL as a countermeasure to CVE-2023-5678. This vulnerability, affecting the package, could cause Denial of Service through specific DH key generation and verification functions when given overly long parameters. |
cryptography | 2.9.2 | <41.0.5 |
show Cryptography 41.0.5 updates Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4, that includes a security fix. |
cryptography | 2.9.2 | <42.0.8 |
show The `cryptography` library has updated its BoringSSL and OpenSSL dependencies in CI due to a security concern. Specifically, the issue involves the functions `EVP_PKEY_param_check()` and `EVP_PKEY_public_check()`, which are used to check DSA public keys or parameters. These functions can experience significant delays when processing excessively long DSA keys or parameters, potentially leading to a Denial of Service (DoS) if the input is from an untrusted source. The vulnerability arises because the key and parameter check functions do not limit the modulus size during checks, despite OpenSSL not allowing public keys with a modulus over 10,000 bits for signature verification. This issue affects applications that directly call these functions and the OpenSSL `pkey` and `pkeyparam` command-line applications with the `-check` option. The OpenSSL SSL/TLS implementation is not impacted, but the OpenSSL 3.0 and 3.1 FIPS providers are affected by this vulnerability. |
cryptography | 2.9.2 | <41.0.0 |
show Cryptography 41.0.0 updates its dependency 'OpenSSL' to v3.1.1 to include a security fix. https://github.com/pyca/cryptography/commit/8708245ccdeaff21d65eea68a4f8d2a7c5949a22 |
cryptography | 2.9.2 | <3.3.2 |
show Cryptography 3.3.2 includes a fix for CVE-2020-36242: certain sequences of update calls to symmetrically encrypt multi-GB values could result in an integer overflow and buffer overflow, as demonstrated by the Fernet class. |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for a Denial of Service vulnerability. https://github.com/pyca/cryptography/commit/b22271cf3c3dd8dc8978f8f4b00b5c7060b6538d https://www.openssl.org/news/secadv/20230731.txt |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2022-3996, a DoS vulnerability affecting openssl. https://github.com/pyca/cryptography/issues/7940 |
cryptography | 2.9.2 | <41.0.2 |
show The cryptography package before 41.0.2 for Python mishandles SSH certificates that have critical options. |
cryptography | 2.9.2 | >=0.8,<41.0.3 |
show Cryptography 41.0.3 updates its bundled OpenSSL version to include a fix for CVE-2023-2975: AES-SIV implementation ignores empty associated data entries. https://github.com/pyca/cryptography/commit/bfa4d95f0f356f2d535efd5c775e0fb3efe90ef2 https://www.openssl.org/news/secadv/20230714.txt |
cryptography | 2.9.2 | >=1.8,<39.0.1 |
show Cryptography 39.0.1 includes a fix for CVE-2023-23931: In affected versions 'Cipher.update_into' would accept Python objects which implement the buffer protocol, but provide only immutable buffers. This would allow immutable objects (such as 'bytes') to be mutated, thus violating fundamental rules of Python and resulting in corrupted output. This issue has been present since 'update_into' was originally introduced in cryptography 1.8. |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
cryptography | 2.9.2 | <39.0.1 |
show Cryptography 39.0.1 updates its dependency 'OpenSSL' to v3.0.8 to include security fixes. https://github.com/pyca/cryptography/issues/8229 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
Package | Installed | Affected | Info |
---|---|---|---|
pywin32 | 227 | >=0,<301 |
show An integer overflow exists in pywin32 prior to version b301 when adding an access control entry (ACE) to an access control list (ACL) that would cause the size to be greater than 65535 bytes. An attacker who successfully exploited this vulnerability could crash the vulnerable process. |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
https://pyup.io/repos/github/feihoo87/QuLab/python-3-shield.svg
[](https://pyup.io/repos/github/feihoo87/QuLab/)
.. image:: https://pyup.io/repos/github/feihoo87/QuLab/python-3-shield.svg :target: https://pyup.io/repos/github/feihoo87/QuLab/ :alt: Python 3
<a href="https://pyup.io/repos/github/feihoo87/QuLab/"><img src="https://pyup.io/repos/github/feihoo87/QuLab/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/feihoo87/QuLab/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/feihoo87/QuLab/
{<img src="https://pyup.io/repos/github/feihoo87/QuLab/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/feihoo87/QuLab/]
https://pyup.io/repos/github/feihoo87/QuLab/shield.svg
[](https://pyup.io/repos/github/feihoo87/QuLab/)
.. image:: https://pyup.io/repos/github/feihoo87/QuLab/shield.svg :target: https://pyup.io/repos/github/feihoo87/QuLab/ :alt: Updates
<a href="https://pyup.io/repos/github/feihoo87/QuLab/"><img src="https://pyup.io/repos/github/feihoo87/QuLab/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/feihoo87/QuLab/shield.svg(Updates)!:https://pyup.io/repos/github/feihoo87/QuLab/
{<img src="https://pyup.io/repos/github/feihoo87/QuLab/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/feihoo87/QuLab/]