Package | Installed | Affected | Info |
---|---|---|---|
pip | 24.0 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
pip | 24.0 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
pip | 24.0 | <25.0 |
show Pip solves a security vulnerability that previously allowed maliciously crafted wheel files to execute unauthorized code during installation. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.4.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.4.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.4.0 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.4.0 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
Package | Installed | Affected | Info |
---|---|---|---|
torch | 2.0.1 | <2.2.0 |
show PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
torch | 2.0.1 | <2.2.0 |
show Pytorch before version v2.2.0 was discovered to contain a use-after-free vulnerability in torch/csrc/jit/mobile/interpreter.cpp. |
torch | 2.0.1 | <=2.6.0 |
show *Disputed* A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. |
torch | 2.0.1 | <2.6.0 |
show PyTorch is a Python package that provides tensor computation with strong GPU acceleration and deep neural networks built on a tape-based autograd system. In version 2.5.1 and prior, a Remote Command Execution (RCE) vulnerability exists in PyTorch when loading a model using torch.load with weights_only=True. This issue has been patched in version 2.6.0. |
https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/python-3-shield.svg
[](https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/)
.. image:: https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/python-3-shield.svg :target: https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/ :alt: Python 3
<a href="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/"><img src="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/
{<img src="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/]
https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg
[](https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/)
.. image:: https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg :target: https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/ :alt: Updates
<a href="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/"><img src="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg(Updates)!:https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/
{<img src="https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/OMalenfantThuot/ML_Calc_Driver/]