| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| Package | Installed | Affected | Info |
|---|---|---|---|
| rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
| rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| idna | 2.8 | <3.7 |
show Affected versions of Idna are vulnerable to Denial Of Service via the idna.encode(), where a specially crafted argument could lead to significant resource consumption. In version 3.7, this function has been updated to reject such inputs efficiently, minimizing resource use. A practical workaround involves enforcing a maximum domain name length of 253 characters before encoding, as the vulnerability is triggered by unusually large inputs that normal operations wouldn't encounter. |
| py | 1.8.0 | <=1.11.0 |
show ** DISPUTED ** Py throughout 1.11.0 allows remote attackers to conduct a ReDoS (Regular expression Denial of Service) attack via a Subversion repository with crafted info data because the InfoSvnCommand argument is mishandled. https://github.com/pytest-dev/py/issues/287 |
| py | 1.8.0 | <=1.9.0 |
show Py 1.10.0 includes a fix for CVE-2020-29651: A denial of service via regular expression in the py.path.svnwc component of py (aka python-py) through 1.9.0 could be used by attackers to cause a compute-time denial of service attack by supplying malicious input to the blame functionality. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| urllib3 | 1.24.1 | >=1.22,<2.6.3 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to redirect handling that drains connections by decompressing redirect response bodies without enforcing streaming read limits. The issue occurs when using urllib3’s streaming mode (for example, preload_content=False) while allowing redirects, because urllib3.response.HTTPResponse.drain_conn() would call HTTPResponse.read() in a way that decoded/decompressed the entire redirect response body even before any streaming reads were performed, effectively bypassing decompression-bomb safeguards. |
| urllib3 | 1.24.1 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
| urllib3 | 1.24.1 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 affected versions are vulnerable due to an issue where the authorization HTTP header is not removed when following a cross-origin redirect. This can result in credentials within the authorization header being exposed to unintended hosts or transmitted in cleartext. This vulnerability exists because of an incomplete fix for CVE-2018-20060, which addressed a similar issue case-sensitively. |
| urllib3 | 1.24.1 | <1.24.3 |
show Urllib3 1.24.3 includes a fix for CVE-2019-11236: CRLF injection is possible if the attacker controls the request parameter. https://github.com/urllib3/urllib3/commit/5d523706c7b03f947dc50a7e783758a2bfff0532 https://github.com/urllib3/urllib3/issues/1553 |
| urllib3 | 1.24.1 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
| urllib3 | 1.24.1 | <1.24.2 |
show Affected versions of urllib3 are vulnerable Improper Certificate Validation. Urllib3 mishandles certain cases where the desired set of CA certificates is different from the OS store of CA certificates, which results in SSL connections succeeding in situations where a verification failure is the correct outcome. This is related to the use of the ssl_context, ca_certs, or ca_certs_dir argument. |
| urllib3 | 1.24.1 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
| urllib3 | 1.24.1 | >=1.0,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to improper handling of highly compressed HTTP response bodies during streaming decompression. The urllib3.HTTPResponse methods stream(), read(), read1(), read_chunked(), and readinto() may fully decompress a minimal but highly compressed payload based on the Content-Encoding header into an internal buffer instead of limiting the decompressed output to the requested chunk size, causing excessive CPU usage and massive memory allocation on the client side. |
| urllib3 | 1.24.1 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
| urllib3 | 1.24.1 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
| urllib3 | 1.24.1 | >=1.24,<2.6.0 |
show Affected versions of the urllib3 package are vulnerable to Denial of Service (DoS) due to allowing an unbounded number of content-encoding decompression steps for HTTP responses. The HTTPResponse content decoding pipeline in urllib3 follows the Content-Encoding header and applies each advertised compression algorithm in sequence without enforcing a maximum chain length or effective output size, so a malicious peer can send a response with a very long encoding chain that triggers excessive CPU use and massive memory allocation during decompression. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| httplib2 | 0.12.1 | <0.18.0 |
show In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. See CVE-2020-11078. |
| httplib2 | 0.12.1 | <0.19.0 |
show httplib2 is a comprehensive HTTP client library for Python. In httplib2 before version 0.19.0, a malicious server which responds with long series of "\xa0" characters in the "www-authenticate" header may cause Denial of Service (CPU burn while parsing header) of the httplib2 client accessing said server. This is fixed in version 0.19.0 which contains a new implementation of auth headers parsing using the pyparsing library. See CVE-2021-21240. |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
| certifi | 2019.3.9 | <2022.12.07 |
show Certifi 2022.12.07 includes a fix for CVE-2022-23491: Certifi 2022.12.07 removes root certificates from "TrustCor" from the root store. These are in the process of being removed from Mozilla's trust store. TrustCor's root certificates are being removed pursuant to an investigation prompted by media reporting that TrustCor's ownership also operated a business that produced spyware. Conclusions of Mozilla's investigation can be found in the linked google group discussion. |
| certifi | 2019.3.9 | >=2015.04.28,<2023.07.22 |
show Certifi 2023.07.22 includes a fix for CVE-2023-37920: Certifi prior to version 2023.07.22 recognizes "e-Tugra" root certificates. e-Tugra's root certificates were subject to an investigation prompted by reporting of security issues in their systems. Certifi 2023.07.22 removes root certificates from "e-Tugra" from the root store. https://github.com/certifi/python-certifi/security/advisories/GHSA-xqr8-7jwr-rhp7 |
https://pyup.io/repos/github/Mulugruntz/jam/python-3-shield.svg
[](https://pyup.io/repos/github/Mulugruntz/jam/)
.. image:: https://pyup.io/repos/github/Mulugruntz/jam/python-3-shield.svg
:target: https://pyup.io/repos/github/Mulugruntz/jam/
:alt: Python 3
<a href="https://pyup.io/repos/github/Mulugruntz/jam/"><img src="https://pyup.io/repos/github/Mulugruntz/jam/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/Mulugruntz/jam/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/Mulugruntz/jam/
{<img src="https://pyup.io/repos/github/Mulugruntz/jam/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/Mulugruntz/jam/]
https://pyup.io/repos/github/Mulugruntz/jam/shield.svg
[](https://pyup.io/repos/github/Mulugruntz/jam/)
.. image:: https://pyup.io/repos/github/Mulugruntz/jam/shield.svg
:target: https://pyup.io/repos/github/Mulugruntz/jam/
:alt: Updates
<a href="https://pyup.io/repos/github/Mulugruntz/jam/"><img src="https://pyup.io/repos/github/Mulugruntz/jam/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/Mulugruntz/jam/shield.svg(Updates)!:https://pyup.io/repos/github/Mulugruntz/jam/
{<img src="https://pyup.io/repos/github/Mulugruntz/jam/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/Mulugruntz/jam/]