Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
Package | Installed | Affected | Info |
---|---|---|---|
rsa | 4.0 | >=2.1,<4.7 |
show Rsa 4.7 includes a fix for CVE-2020-25658: It was found that python-rsa is vulnerable to Bleichenbacher timing attacks. An attacker can use this flaw via the RSA decryption API to decrypt parts of the cipher text encrypted with RSA. |
rsa | 4.0 | <4.3 |
show Rsa 4.3 includes a fix for CVE-2020-13757: Python-RSA before 4.3 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation). |
PyYAML | 5.3.1 | <5.4 |
show Pyyaml version 5.4 includes a fix for CVE-2020-14343: A vulnerability was discovered in the PyYAML library in versions before 5.4, where it is susceptible to arbitrary code execution when it processes untrusted YAML files through the full_load method or with the FullLoader loader. Applications that use the library to process untrusted input may be vulnerable to this flaw. This flaw allows an attacker to execute arbitrary code on the system by abusing the python/object/new constructor. This flaw is due to an incomplete fix for CVE-2020-1747. https://bugzilla.redhat.com/show_bug.cgi?id=1860466 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in inventory. https://github.com/sphinx-doc/sphinx/issues/8175 https://github.com/sphinx-doc/sphinx/commit/f7b872e673f9b359a61fd287a7338a28077840d2 |
sphinx | 2.4.4 | <3.3.0 |
show Sphinx 3.3.0 includes a fix for a ReDoS vulnerability in docstring. https://github.com/sphinx-doc/sphinx/issues/8172 https://github.com/sphinx-doc/sphinx/commit/f00e75278c5999f40b214d8934357fbf0e705417 |
sphinx | 2.4.4 | <3.0.4 |
show Sphinx 3.0.4 updates jQuery version from 3.4.1 to 3.5.1 for security reasons. |
sqlparse | 0.3.1 | >=0.1.15,<0.4.4 |
show Sqlparse 0.4.4 includes a fix for CVE-2023-30608: Parser contains a regular expression that is vulnerable to ReDOS (Regular Expression Denial of Service). https://github.com/andialbrecht/sqlparse/security/advisories/GHSA-rrm6-wvj7-cwh2 |
sqlparse | 0.3.1 | <0.5.0 |
show Sqlparse 0.5.0 addresses a potential denial of service (DoS) vulnerability related to recursion errors in deeply nested SQL statements. To mitigate this issue, the update replaces recursion errors with a general SQLParseError, improving the resilience and stability of the parsing process. |
urllib3 | 1.25.8 | <2.5.0 |
show Urllib3 is a user-friendly HTTP client library for Python. Starting in version 2.2.0 and before 2.5.0, urllib3 does not control redirects in browsers and Node.js. urllib3 supports being used in a Pyodide runtime, utilizing the JavaScript Fetch API or falling back on XMLHttpRequest. This means Python libraries can be used to make HTTP requests from a browser or Node.js. Additionally, urllib3 provides a mechanism to control redirects, but the retries and redirect parameters are ignored with Pyodide; the runtime itself determines redirect behaviour. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <2.5.0 |
show urllib3 is a user-friendly HTTP client library for Python. Prior to 2.5.0, it is possible to disable redirects for all requests by instantiating a PoolManager and specifying retries in a way that disable redirects. By default, requests and botocore users are not affected. An application attempting to mitigate SSRF or open redirect vulnerabilities by disabling redirects at the PoolManager level will remain vulnerable. This issue has been patched in version 2.5.0. |
urllib3 | 1.25.8 | <1.26.17 , >=2.0.0a1,<2.0.5 |
show Urllib3 1.26.17 and 2.0.5 include a fix for CVE-2023-43804: Urllib3 doesn't treat the 'Cookie' HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a 'Cookie' header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. https://github.com/urllib3/urllib3/security/advisories/GHSA-v845-jxx5-vc9f |
urllib3 | 1.25.8 | <1.26.5 |
show Urllib3 1.26.5 includes a fix for CVE-2021-33503: When provided with a URL containing many @ characters in the authority component, the authority regular expression exhibits catastrophic backtracking, causing a denial of service if a URL were passed as a parameter or redirected to via an HTTP redirect. https://github.com/advisories/GHSA-q2q7-5pp4-w6pg |
urllib3 | 1.25.8 | <1.25.9 |
show Urllib3 1.25.9 includes a fix for CVE-2020-26137: Urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. https://github.com/python/cpython/issues/83784 https://github.com/urllib3/urllib3/pull/1800 |
urllib3 | 1.25.8 | <=1.26.18 , >=2.0.0a1,<=2.2.1 |
show Urllib3's ProxyManager ensures that the Proxy-Authorization header is correctly directed only to configured proxies. However, when HTTP requests bypass urllib3's proxy support, there's a risk of inadvertently setting the Proxy-Authorization header, which remains ineffective without a forwarding or tunneling proxy. Urllib3 does not recognize this header as carrying authentication data, failing to remove it during cross-origin redirects. While this scenario is uncommon and poses low risk to most users, urllib3 now proactively removes the Proxy-Authorization header during cross-origin redirects as a precautionary measure. Users are advised to utilize urllib3's proxy support or disable automatic redirects to handle the Proxy-Authorization header securely. Despite these precautions, urllib3 defaults to stripping the header to safeguard users who may inadvertently misconfigure requests. |
urllib3 | 1.25.8 | <1.26.18 , >=2.0.0a1,<2.0.7 |
show Affected versions of urllib3 are vulnerable to an HTTP redirect handling vulnerability that fails to remove the HTTP request body when a POST changes to a GET via 301, 302, or 303 responses. This flaw can expose sensitive request data if the origin service is compromised and redirects to a malicious endpoint, though exploitability is low when no sensitive data is used. The vulnerability affects automatic redirect behavior. It is fixed in versions 1.26.18 and 2.0.7; update or disable redirects using redirects=False. This vulnerability is specific to Python's urllib3 library. |
ipython | 7.13.0 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.13.0 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
werkzeug | 1.0.0 | <3.0.3 |
show Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are vulnerable to Path Traversal (CWE-22) on Windows systems running Python versions below 3.11. The safe_join() function failed to properly detect certain absolute paths on Windows, allowing attackers to potentially access files outside the intended directory. An attacker could craft special paths starting with "/" that bypass the directory restrictions on Windows systems. The vulnerability exists in the safe_join() function which relied solely on os.path.isabs() for path validation. This is exploitable on Windows systems by passing paths starting with "/" to safe_join(). To remediate, upgrade to the latest version which includes additional path validation checks. NOTE: This vulnerability specifically affects Windows systems running Python versions below 3.11 where ntpath.isabs() behavior differs. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-23934: Browsers may allow "nameless" cookies that look like '=value' instead of 'key=value'. A vulnerable browser may allow a compromised application on an adjacent subdomain to exploit this to set a cookie like '=__Host-test=bad' for another subdomain. Werkzeug prior to 2.2.3 will parse the cookie '=__Host-test=bad' as __Host-test=bad'. If a Werkzeug application is running next to a vulnerable or malicious subdomain which sets such a cookie using a vulnerable browser, the Werkzeug application will see the bad cookie value but the valid cookie key. https://github.com/pallets/werkzeug/security/advisories/GHSA-px8h-6qxv-m22q |
werkzeug | 1.0.0 | <=2.3.7 , >=3.0.0,<3.0.1 |
show Werkzeug is a comprehensive WSGI web application library. If an upload of a file that starts with CR or LF and then is followed by megabytes of data without these characters: all of these bytes are appended chunk by chunk into internal bytearray and lookup for boundary is performed on growing buffer. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. |
werkzeug | 1.0.0 | ==3.0.0 , <2.3.8 |
show Werkzeug 3.0.1 and 2.3.8 include a security fix: Slow multipart parsing for large parts potentially enabling DoS attacks. https://github.com/pallets/werkzeug/commit/b1916c0c083e0be1c9d887ee2f3d696922bfc5c1 |
werkzeug | 1.0.0 | <3.0.6 |
show Affected versions of Werkzeug are potentially vulnerable to resource exhaustion when parsing file data in forms. Applications using 'werkzeug.formparser.MultiPartParser' to parse 'multipart/form-data' requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. |
werkzeug | 1.0.0 | <2.2.3 |
show Werkzeug 2.2.3 includes a fix for CVE-2023-25577: Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses 'request.data', 'request.form', 'request.files', or 'request.get_data(parse_form_data=False)', it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. https://github.com/pallets/werkzeug/security/advisories/GHSA-xg9f-g7g7-2323 |
requests | 2.23.0 | <2.32.4 |
show Requests is an HTTP library. Due to a URL parsing issue, Requests releases prior to 2.32.4 may leak .netrc credentials to third parties for specific maliciously-crafted URLs. Users should upgrade to version 2.32.4 to receive a fix. For older versions of Requests, use of the .netrc file can be disabled with `trust_env=False` on one's Requests Session. |
requests | 2.23.0 | <2.32.2 |
show Affected versions of Requests, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. Requests 2.32.0 fixes the issue, but versions 2.32.0 and 2.32.1 were yanked due to conflicts with CVE-2024-35195 mitigation. |
requests | 2.23.0 | >=2.3.0,<2.31.0 |
show Affected versions of Requests are vulnerable to proxy credential leakage. When redirected to an HTTPS endpoint, the Proxy-Authorization header is forwarded to the destination server due to the use of rebuild_proxies to reattach the header. This may allow a malicious actor to exfiltrate sensitive information. |
sentry-sdk | 0.14.3 | <1.4.1 |
show Sentry-sdk 1.4.1 includes a fix for a Race Condition vulnerability. https://github.com/getsentry/sentry-python/pull/1203 |
sentry-sdk | 0.14.3 | <2.8.0 |
show Affected versions of Sentry's Python SDK are vulnerable to unintentional exposure of environment variables to subprocesses despite the env={} setting. In Python's 'subprocess' calls, all environment variables are passed to subprocesses by default. However, if you specifically do not want them to be passed to subprocesses, you may use 'env' argument in 'subprocess' calls. Due to the bug in Sentry SDK, with the Stdlib integration enabled (which is enabled by default), this expectation is not fulfilled, and all environment variables are being passed to subprocesses instead. As a workaround, and if passing environment variables to child processes poses a security risk for you, you can disable all default integrations. |
sentry-sdk | 0.14.3 | <1.14.0 |
show Sentry-sdk 1.14.0 includes a fix for CVE-2023-28117: When using the Django integration of versions prior to 1.14.0 of the Sentry SDK in a specific configuration it is possible to leak sensitive cookies values, including the session cookie to Sentry. These sensitive cookies could then be used by someone with access to your Sentry issues to impersonate or escalate their privileges within your application. In order for these sensitive values to be leaked, the Sentry SDK configuration must have 'sendDefaultPII' set to 'True'; one must use a custom name for either 'SESSION_COOKIE_NAME' or 'CSRF_COOKIE_NAME' in one's Django settings; and one must not be configured in one's organization or project settings to use Sentry's data scrubbing features to account for the custom cookie names. As of version 1.14.0, the Django integration of the 'sentry-sdk' will detect the custom cookie names based on one's Django settings and will remove the values from the payload before sending the data to Sentry. As a workaround, use the SDK's filtering mechanism to remove the cookies from the payload that is sent to Sentry. For error events, this can be done with the 'before_send' callback method and for performance related events (transactions) one can use the 'before_send_transaction' callback method. Those who want to handle filtering of these values on the server-side can also use Sentry's advanced data scrubbing feature to account for the custom cookie names. Look for the '$http.cookies', '$http.headers', '$request.cookies', or '$request.headers' fields to target with a scrubbing rule. https://github.com/getsentry/sentry-python/security/advisories/GHSA-29pr-6jr8-q5jm |
django-stubs | 1.5.0 | <5.2.0 |
show Affected versions of django-stubs are potentially vulnerable to Security Misconfiguration. The inclusion of type stubs for deprecated and insecure password hashers (MD5PasswordHasher, SHA1PasswordHasher, and CryptPasswordHasher) may inadvertently encourage their use in Django applications. This can lead to the storage of user passwords using weak hashing algorithms, making them susceptible to brute-force attacks. |
django-debug-toolbar | 2.2 | <1.11.1 , >2,<2.2.1 , >3,<3.2.1 |
show A SQL Injection issue in the SQL Panel in Jazzband Django Debug Toolbar before 1.11.1, 2.x before 2.2.1, and 3.x before 3.2.1 allows attackers to execute SQL statements by changing the raw_sql input field of the SQL explain, analyze, or select form. See CVE-2021-30459. |
social-auth-app-django | 3.1.0 | <5.4.1 |
show Python Social Auth is a social authentication/registration mechanism. Prior to version 5.4.1, due to default case-insensitive collation in MySQL or MariaDB databases, third-party authentication user IDs are not case-sensitive and could cause different IDs to match. This issue has been addressed by a fix released in version 5.4.1. An immediate workaround would be to change collation of the affected field. See CVE-2024-32879. |
https://pyup.io/repos/github/EYRA-Benchmark/comic/python-3-shield.svg
[](https://pyup.io/repos/github/EYRA-Benchmark/comic/)
.. image:: https://pyup.io/repos/github/EYRA-Benchmark/comic/python-3-shield.svg :target: https://pyup.io/repos/github/EYRA-Benchmark/comic/ :alt: Python 3
<a href="https://pyup.io/repos/github/EYRA-Benchmark/comic/"><img src="https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/EYRA-Benchmark/comic/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/EYRA-Benchmark/comic/
{<img src="https://pyup.io/repos/github/EYRA-Benchmark/comic/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/EYRA-Benchmark/comic/]
https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg
[](https://pyup.io/repos/github/EYRA-Benchmark/comic/)
.. image:: https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg :target: https://pyup.io/repos/github/EYRA-Benchmark/comic/ :alt: Updates
<a href="https://pyup.io/repos/github/EYRA-Benchmark/comic/"><img src="https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg(Updates)!:https://pyup.io/repos/github/EYRA-Benchmark/comic/
{<img src="https://pyup.io/repos/github/EYRA-Benchmark/comic/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/EYRA-Benchmark/comic/]