Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
Package | Installed | Affected | Info |
---|---|---|---|
parso | 0.5.0 | <0.5.1 |
show A deserialization vulnerability exists in the way parso handles grammar parsing from the cache. Cache loading relies on pickle and, provided that an evil pickle can be written to a cache grammar file and that its parsing can be triggered, this flaw leads to Arbitrary Code Execution. Version 0.5.1 adds a note about the use of pickle. NOTE: This is disputed because "the cache directory is not under control of the attacker in any common configuration." |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A security vulnerability has been discovered in certain versions of Django, affecting the password reset functionality. The PasswordResetForm class in django.contrib.auth.forms inadvertently allowed attackers to enumerate user email addresses by exploiting unhandled exceptions during the email sending process. This could be done by issuing password reset requests and observing the responses. Django has implemented a fix where these exceptions are now caught and logged using the django.contrib.auth logger, preventing potential information leakage through error responses. |
django | 2.1.7 | <4.2.16 , >=5.0a1,<5.0.9 , >=5.1a1,<5.1.1 |
show A potential denial-of-service vulnerability has been identified in Django's urlize() and urlizetrunc() functions in django.utils.html. This vulnerability can be triggered by inputting huge strings containing a specific sequence of characters. |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45116: An issue was discovered in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1. Due to leveraging the Django Template Language's variable resolution logic, the dictsort template filter was potentially vulnerable to information disclosure, or an unintended method call, if passed a suitably crafted key. https://www.djangoproject.com/weblog/2022/jan/04/security-releases |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a directory-traversal vulnerability in the Storage.save() method. Derived classes of the django.core.files.storage.Storage base class that overrides the generate_filename() method without replicating the file path validations existing in the parent class could allow for directory traversal via certain inputs when calling save(). This could enable an attacker to manipulate file paths and access unintended directories. |
django | 2.1.7 | >=5.2,<5.2.2 , >=5.0a1,<5.1.10 , <4.2.22 |
show An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 includes a fix for CVE-2019-14235: If passed certain inputs, django.utils.encoding.uri_to_iri could lead to significant memory usage due to a recursion when repercent-encoding invalid UTF-8 octet sequences. |
django | 2.1.7 | <3.2.25 , >=4.0a1,<4.2.11 , >=5.0a1,<5.0.3 |
show Affected versions of Django are vulnerable to potential regular expression denial-of-service (REDoS). django.utils.text.Truncator.words() method (with html=True) and truncatewords_html template filter were subject to a potential regular expression denial-of-service attack using a suitably crafted string (follow up to CVE-2019-14232 and CVE-2023-43665). |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a username enumeration vulnerability caused by timing differences in the django.contrib.auth.backends.ModelBackend.authenticate() method. This method allowed remote attackers to enumerate users through a timing attack involving login requests for users with unusable passwords. The timing difference in the authentication process exposed whether a username was valid or not, potentially aiding attackers in gaining unauthorized access. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Affected versions of Django has a potential SQL injection vulnerability in the QuerySet.values() and QuerySet.values_list() methods. When used on models with a JSONField, these methods are susceptible to SQL injection through column aliases if a crafted JSON object key is passed as an argument. |
django | 2.1.7 | >=5.2.0,<5.2.1 , >=5.1.0,<5.1.9 , <4.2.21 |
show An issue was discovered in Django 4.2 before 4.2.21, 5.1 before 5.1.9, and 5.2 before 5.2.1. The django.utils.html.strip_tags() function is vulnerable to a potential denial-of-service (slow performance) when processing inputs containing large sequences of incomplete HTML tags. The template filter striptags is also vulnerable, because it is built on top of strip_tags(). |
django | 2.1.7 | <3.2.16 , >=4.0a1,<4.0.8 , >=4.1a1,<4.1.2 |
show In Django 3.2 before 3.2.16, 4.0 before 4.0.8, and 4.1 before 4.1.2, internationalized URLs were subject to a potential denial of service attack via the locale parameter, which is treated as a regular expression. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are affected by a potential denial-of-service vulnerability in the django.utils.html.urlize() function. The urlize and urlizetrunc template filters were susceptible to a denial-of-service attack via certain inputs containing many brackets. An attacker could exploit this vulnerability to cause significant delays or crashes in the affected application. |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Django affected versions are vulnerable to a potential SQL injection in the HasKey(lhs, rhs) lookup on Oracle databases. The vulnerability arises when untrusted data is directly used as the lhs value in the django.db.models.fields.json.HasKey lookup. However, applications using the jsonfield.has_key lookup with the __ syntax remain unaffected by this issue. |
django | 2.1.7 | >=2.1a1,<2.1.15 , >=2.2a1,<2.2.8 |
show Django 2.1.15 and 2.2.8 includes a fix for CVE-2019-19118: A Django model admin displaying inline related models, where the user has view-only permissions to a parent model but edit permissions to the inline model, would be presented with an editing UI, allowing POST requests, for updating the inline model. Directly editing the view-only parent model was not possible, but the parent model's save() method was called, triggering potential side effects, and causing pre and post-save signal handlers to be invoked. To resolve this, the Django admin is adjusted to require edit permissions on the parent model in order for inline models to be editable. |
django | 2.1.7 | <2.1.9 , >=2.2a1,<2.2.2 |
show Django versions 2.1.9 and 2.2.2 include a patched bundled jQuery version to avoid a Prototype Pollution vulnerability. |
django | 2.1.7 | <2.2.25 , >=3.2a1,<3.2.10 , >=3.1a1,<3.1.14 |
show Django versions 2.2.25, 3.1.14 and 3.2.10 include a fix for CVE-2021-44420: In Django 2.2 before 2.2.25, 3.1 before 3.1.14, and 3.2 before 3.2.10, HTTP requests for URLs with trailing newlines could bypass upstream access control based on URL paths. https://www.djangoproject.com/weblog/2021/dec/07/security-releases/ |
django | 2.1.7 | <4.2.17 , >=5.0a1,<5.0.10 , >=5.1a1,<5.1.4 |
show Affected versions of Django are vulnerable to a potential denial-of-service (DoS) attack in the `django.utils.html.strip_tags()` method. The vulnerability occurs when the `strip_tags()` method or the `striptags` template filter processes inputs containing large sequences of nested, incomplete HTML entities. |
django | 2.1.7 | <3.2.24 , >=4.0a1,<4.2.10 , >=5.0a1,<5.0.2 |
show Affected versions of Django are vulnerable to potential denial-of-service in intcomma template filter when used with very long strings. |
django | 2.1.7 | <2.2.24 , >=3.0a1,<3.1.12 , >=3.2a1,<3.2.4 |
show Django before 2.2.24, 3.x before 3.1.12, and 3.2.x before 3.2.4 has a potential directory traversal via django.contrib.admindocs. Staff members could use the TemplateDetailView view to check the existence of arbitrary files. Additionally, if (and only if) the default admindocs templates have been customized by application developers to also show file contents, then not only the existence but also the file contents would have been exposed. In other words, there is directory traversal outside of the template root directories. https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | <3.2.19 , >=4.0a1,<4.1.9 , >=4.2a1,<4.2.1 |
show Django 4.2.1, 4.1.9 and 3.2.19 include a fix for CVE-2023-31047: In Django 3.2 before 3.2.19, 4.x before 4.1.9, and 4.2 before 4.2.1, it was possible to bypass validation when using one form field to upload multiple files. This multiple upload has never been supported by forms.FileField or forms.ImageField (only the last uploaded file was validated). However, Django's "Uploading multiple files" documentation suggested otherwise. https://www.djangoproject.com/weblog/2023/may/03/security-releases |
django | 2.1.7 | >=3.2a1,<3.2.1 , <2.2.21 , >=3.0a1,<3.1.9 |
show Django 2.2.21, 3.1.9 and 3.2.1 include a fix for CVE-2021-31542: MultiPartParser, UploadedFile, and FieldFile allowed directory traversal via uploaded files with suitably crafted file names. https://www.djangoproject.com/weblog/2021/may/04/security-releases |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show Django 2.2.16, 3.0.10 and 3.1.1 include a fix for CVE-2020-24583: An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). FILE_UPLOAD_DIRECTORY_PERMISSIONS mode was not applied to intermediate-level directories created in the process of uploading files. It was also not applied to intermediate-level collected static directories when using the collectstatic management command. #NOTE: This vulnerability affects only users of Python versions above 3.7. https://www.djangoproject.com/weblog/2020/sep/01/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show The {% debug %} template tag in Django 2.2 before 2.2.27, 3.2 before 3.2.12, and 4.0 before 4.0.2 does not properly encode the current context. This may lead to XSS. |
django | 2.1.7 | >=3.0.0a1,<3.1.12 , >=3.2.0a1,<3.2.4 , <2.2.24 |
show Django 2.2.24, 3.1.12, and 3.2.4 include a fix for CVE-2021-33571: In Django 2.2 before 2.2.24, 3.x before 3.1.12, and 3.2 before 3.2.4, URLValidator, validate_ipv4_address, and validate_ipv46_address do not prohibit leading zero characters in octal literals. This may allow a bypass of access control that is based on IP addresses. (validate_ipv4_address and validate_ipv46_address are unaffected with Python 3.9.5+). https://www.djangoproject.com/weblog/2021/jun/02/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14234: Due to an error in shallow key transformation, key and index lookups for django.contrib.postgres.fields.JSONField, and key lookups for django.contrib.postgres.fields.HStoreField, were subject to SQL injection. This could, for example, be exploited via crafted use of "OR 1=1" in a key or index name to return all records, using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to the QuerySet.filter() function. |
django | 2.1.7 | <2.2.16 , >=3.0a1,<3.0.10 , >=3.1a1,<3.1.1 |
show An issue was discovered in Django 2.2 before 2.2.16, 3.0 before 3.0.10, and 3.1 before 3.1.1 (when Python 3.7+ is used). The intermediate-level directories of the filesystem cache had the system's standard umask rather than 0o077. |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28346: An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.21 , >=2.0a1,<2.1.9 , >=2.2a1,<2.2.2 |
show Django 1.11.21, 2.1.9 and 2.2.2 include a fix for CVE-2019-12308: The clickable Current URL value displayed by the AdminURLFieldWidget displays the provided value without validating it as a safe URL. Thus, a non validated value stored in the database, or a value provided as a URL query parameter payload, could result in an clickable JavaScript link. |
django | 2.1.7 | >=1.11a1,<1.11.22 , >=2.2a1,<2.2.3 , >=2.1a1,<2.1.10 |
show An issue was discovered in Django 1.11 before 1.11.22, 2.1 before 2.1.10, and 2.2 before 2.2.3. An HTTP request is not redirected to HTTPS when the SECURE_PROXY_SSL_HEADER and SECURE_SSL_REDIRECT settings are used, and the proxy connects to Django via HTTPS. In other words, django.http.HttpRequest.scheme has incorrect behavior when a client uses HTTP. |
django | 2.1.7 | >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 , <1.11.23 |
show Django 1.11.23, 2.1.11 and 2.2.4 include a fix for CVE-2019-14232: If django.utils.text.Truncator's chars() and words() methods were passed the html=True argument, they were extremely slow to evaluate certain inputs due to a catastrophic backtracking vulnerability in a regular expression. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which were thus vulnerable. |
django | 2.1.7 | <3.2.17 , >=4.0a1,<4.0.9 , >=4.1a1,<4.1.6 |
show Django 3.2.17, 4.0.9 and 4.1.6 includes a fix for CVE-2023-23969: In Django 3.2 before 3.2.17, 4.0 before 4.0.9, and 4.1 before 4.1.6, the parsed values of Accept-Language headers are cached in order to avoid repetitive parsing. This leads to a potential denial-of-service vector via excessive memory usage if the raw value of Accept-Language headers is very large. https://www.djangoproject.com/weblog/2023/feb/01/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45115: UserAttributeSimilarityValidator incurred significant overhead in evaluating a submitted password that was artificially large in relation to the comparison values. In a situation where access to user registration was unrestricted, this provided a potential vector for a denial-of-service attack. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <2.2.28 , >=3.0a1,<3.2.13 , >=4.0a1,<4.0.4 |
show Django 2.2.28, 3.2.13 and 4.0.4 include a fix for CVE-2022-28347: A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. https://www.djangoproject.com/weblog/2022/apr/11/security-releases |
django | 2.1.7 | <2.2.26 , >=3.0a1,<3.2.11 , >=4.0a1,<4.0.1 |
show Django 2.2.26, 3.2.11 and 4.0.1 include a fix for CVE-2021-45452: Storage.save in Django 2.2 before 2.2.26, 3.2 before 3.2.11, and 4.0 before 4.0.1 allows directory traversal if crafted filenames are directly passed to it. https://www.djangoproject.com/weblog/2022/jan/04/security-releases/ |
django | 2.1.7 | <4.2.20 , >=5.0a1,<5.0.13 , >=5.1a1,<5.0.7 |
show Affected versions of Django are vulnerable to a potential denial-of-service in django.utils.text.wrap(). The django.utils.text.wrap() and wordwrap template filter were subject to a potential denial-of-service attack when used with very long strings. |
django | 2.1.7 | <3.2.23 , >=4.0a1,<4.1.13 , >=4.2a1,<4.2.7 |
show Django 4.2.7, 4.1.13 and 3.2.23 include a fix for CVE-2023-46695: Potential denial of service vulnerability in UsernameField on Windows. https://www.djangoproject.com/weblog/2023/nov/01/security-releases |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django has a potential denial-of-service vulnerability in django.utils.html.urlize() and AdminURLFieldWidget. The urlize and urlizetrunc functions, along with AdminURLFieldWidget, are vulnerable to denial-of-service attacks when handling inputs with a very large number of Unicode characters. |
django | 2.1.7 | <4.2.14 , >=5.0a1,<5.0.7 |
show Affected versions of Django are potentially vulnerable to denial-of-service via the get_supported_language_variant() method. This method was susceptible to a denial-of-service attack when used with very long strings containing specific characters. Exploiting this vulnerability could cause significant delays or crashes in the affected application, potentially leading to service disruption. |
django | 2.1.7 | >=1.11a1,<1.11.23 , >=2.0a1,<2.1.11 , >=2.2a1,<2.2.4 |
show Django 1.11.23, 2.1.11, and 2.2.4 include a fix for CVE-2019-14233: Due to the behavior of the underlying HTMLParser, django.utils.html.strip_tags would be extremely slow to evaluate certain inputs containing large sequences of nested incomplete HTML entities. |
django | 2.1.7 | <3.2.21 , >=4.0a1,<4.1.11 , >=4.2a1,<4.2.5 |
show Affected versions of Django are vulnerable to potential Denial of Service via certain inputs with a very large number of Unicode characters in django.utils.encoding.uri_to_iri(). |
django | 2.1.7 | <3.2.22 , >=4.0a1,<4.1.12 , >=4.2a1,<4.2.6 |
show Affected versions of Django are vulnerable to Denial-of-Service via django.utils.text.Truncator. The django.utils.text.Truncator chars() and words() methods (when used with html=True) are subject to a potential DoS (denial of service) attack via certain inputs with very long, potentially malformed HTML text. The chars() and words() methods are used to implement the truncatechars_html and truncatewords_html template filters, which are thus also vulnerable. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232. |
django | 2.1.7 | >=2.0a1,<2.2.18 , >=3.0a1,<3.0.12 , >=3.1a1,<3.1.6 |
show Django 2.2.18, 3.0.12 and 3.1.6 include a fix for CVE-2021-3281: The django.utils.archive.extract method (used by "startapp --template" and "startproject --template") allows directory traversal via an archive with absolute paths or relative paths with dot segments. |
django | 2.1.7 | <3.2.14 , >=4.0a1,<4.0.6 |
show Django 3.2.14 and 4.0.6 include a fix for CVE-2022-34265: Potential SQL injection via Trunc(kind) and Extract(lookup_name) arguments. https://www.djangoproject.com/weblog/2022/jul/04/security-releases |
django | 2.1.7 | <2.2.27 , >=3.0a1,<3.2.12 , >=4.0a1,<4.0.2 |
show Django 2.2.27, 3.2.12 and 4.0.2 include a fix for CVE-2022-23833: Denial-of-service possibility in file uploads. https://www.djangoproject.com/weblog/2022/feb/01/security-releases |
django | 2.1.7 | >=4.0a1,<4.1.10 , >=4.2a1,<4.2.3 , <3.2.20 |
show Affected versions of Django are vulnerable to a potential ReDoS (regular expression denial of service) in EmailValidator and URLValidator via a very large number of domain name labels of emails and URLs. |
django | 2.1.7 | >=1.11a1,<1.11.27 , >=2.0a1,<2.2.9 , >=3.0a1,<3.0.1 |
show Django 1.11.27, 2.2.9 and 3.0.1 include a fix for CVE-2019-19844: Account takeover. A suitably crafted email address (that is equal to an existing user's email address after case transformation of Unicode characters) would allow an attacker to be sent a password reset token for the matched user account. One mitigation in the new releases is to send password reset tokens only to the registered user email address. |
django | 2.1.7 | <4.2.18 , >=5.0.0,<5.0.11 , >=5.1.0,<5.1.5 |
show Affected versions of Django are vulnerable to a potential denial-of-service attack due to improper IPv6 validation. The lack of upper limit enforcement for input strings in clean_ipv6_address, is_valid_ipv6_address, and the django.forms.GenericIPAddressField form field allowed attackers to exploit overly long inputs, causing resource exhaustion. The vulnerability is addressed by defining a max_length of 39 characters for affected form fields. The django.db.models.GenericIPAddressField model field was not impacted. Users should upgrade promptly. |
django | 2.1.7 | <3.2.15 , >=4.0a1,<4.0.7 |
show Django 3.2.15 and 4.0.7 include a fix for CVE-2022-36359: An issue was discovered in the HTTP FileResponse class in Django 3.2 before 3.2.15 and 4.0 before 4.0.7. An application is vulnerable to a reflected file download (RFD) attack that sets the Content-Disposition header of a FileResponse when the filename is derived from user-supplied input. https://www.djangoproject.com/weblog/2022/aug/03/security-releases |
django | 2.1.7 | >=3.0a1,<3.0.13 , >=3.1a1,<3.1.7 , <2.2.19 |
show Django versions 2.2.19, 3.0.13 and 3.1.7 include a fix for CVE-2021-23336: Web cache poisoning via 'django.utils.http.limited_parse_qsl()'. Django contains a copy of 'urllib.parse.parse_qsl' which was added to backport some security fixes. A further security fix has been issued recently such that 'parse_qsl(' no longer allows using ';' as a query parameter separator by default. |
django | 2.1.7 | <4.2.15 , >=5.0a1,<5.0.8 |
show Django addresses a memory exhaustion issue in django.utils.numberformat.floatformat(). When floatformat receives a string representation of a number in scientific notation with a large exponent, it could lead to excessive memory consumption. To prevent this, decimals with more than 200 digits are now returned as-is. |
django | 2.1.7 | <3.2.18 , >=4.0a1,<4.0.10 , >=4.1a1,<4.1.7 |
show Django 4.1.7, 4.0.10 and 3.2.18 include a fix for CVE-2023-24580: Potential denial-of-service vulnerability in file uploads. https://www.djangoproject.com/weblog/2023/feb/14/security-releases |
django | 2.1.7 | >=1.11a1,<1.11.28 , >=2.0a1,<2.2.10 , >=3.0a1,<3.0.3 |
show Django 1.11.28, 2.2.10 and 3.0.3 include a fix for CVE-2020-7471: SQL Injection if untrusted data is used as a StringAgg delimiter (e.g., in Django applications that offer downloads of data as a series of rows with a user-specified column delimiter). By passing a suitably crafted delimiter to a contrib.postgres.aggregates.StringAgg instance, it was possible to break escaping and inject malicious SQL. |
bleach | 3.1.0 | <3.3.0 |
show Bleach 3.3.0 includes a fix for CVE-2021-23980: A mutation XSS affects users calling bleach.clean with all of: svg or math in the allowed tags p or br in allowed tags style, title, noscript, script, textarea, noframes, iframe, or xmp in allowed tags the keyword argument strip_comments=False Note: none of the above tags are in the default allowed tags and strip_comments defaults to True. |
bleach | 3.1.0 | <=3.1.0 |
show Bleach 3.1.1 includes a fix for CVE-2020-6802: Mutation XSS in bleach.clean when noscript and raw tag whitelisted. https://github.com/mozilla/bleach/security/advisories/GHSA-q65m-pv3f-wr5r |
bleach | 3.1.0 | <3.1.2 |
show Bleach 3.1.2 includes a fix for CVE-2020-6816: Mutation XSS via whitelisted math or svg and RCDATA tag with strip=False. https://github.com/mozilla/bleach/security/advisories/GHSA-m6xf-fq7q-8743 |
bleach | 3.1.0 | <=3.1.3 |
show Bleach 3.1.4 includes a fix for CVE-2020-6817: bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS). Calls to bleach.clean with an allowed tag with an allowed style attribute are vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}). |
ipython | 7.6.1 | >=8.0.0a0,<8.0.1 , >=7.17.0,<7.31.1 , >=6.0.0a0,<7.16.3 , <5.11 |
show Ipython versions 8.0.1, 7.31.1, 7.16.3 and 5.11 include a fix for CVE-2022-21699: Affected versions are subject to an arbitrary code execution vulnerability achieved by not properly managing cross user temporary files. This vulnerability allows one user to run code as another on the same machine. https://github.com/ipython/ipython/security/advisories/GHSA-pq7m-3gw7-gq5x |
ipython | 7.6.1 | <8.10.0 |
show IPython 8.10.0 includes a fix for CVE-2023-24816: Versions prior to 8.10.0 are subject to a command injection vulnerability with very specific prerequisites. This vulnerability requires that the function 'IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The dependency on 'ctypes' in 'IPython.utils._process_win32' prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool 'set_term_title' could be called and hence introduce a vulnerability. If an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process. As a workaround, users should ensure that any calls to the 'IPython.utils.terminal.set_term_title' function are done with trusted or filtered input. https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7 |
jinja2 | 2.10.1 | <3.1.6 |
show Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6. |
jinja2 | 2.10.1 | <3.1.5 |
show An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker who controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. |
jinja2 | 2.10.1 | <2.11.3 |
show This affects the package jinja2 from 0.0.0 and before 2.11.3. The ReDoS vulnerability is mainly due to the '_punctuation_re regex' operator and its use of multiple wildcards. The last wildcard is the most exploitable as it searches for trailing punctuation. This issue can be mitigated by Markdown to format user content instead of the urlize filter, or by implementing request timeouts and limiting process memory. |
jinja2 | 2.10.1 | <3.1.5 |
show A vulnerability in the Jinja compiler allows an attacker who can control both the content and filename of a template to execute arbitrary Python code, bypassing Jinja's sandbox protections. To exploit this vulnerability, an attacker must have the ability to manipulate both the template's filename and its contents. The risk depends on the application's specific use case. This issue affects applications that render untrusted templates where the attacker can determine the template filename, potentially leading to severe security breaches. |
jinja2 | 2.10.1 | <3.1.4 |
show Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. |
jinja2 | 2.10.1 | <3.1.3 |
show Jinja is an extensible templating engine. Special placeholders in the template allow writing code similar to Python syntax. It is possible to inject arbitrary HTML attributes into the rendered HTML template, potentially leading to Cross-Site Scripting (XSS). The Jinja `xmlattr` filter can be abused to inject arbitrary HTML attribute keys and values, bypassing the auto escaping mechanism and potentially leading to XSS. It may also be possible to bypass attribute validation checks if they are blacklist-based. |
tornado | 6.0.3 | <6.5.0 |
show When Tornado's multipart/form-data parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. |
tornado | 6.0.3 | <6.3.3 |
show Summary: Tornado's interpretation of symbols `-`, `+`, and `_` within chunk lengths and 'Content-Length' values contradicts the HTTP RFCs stipulations, potentially creating an avenue for request smuggling. This issue is generally found when Tornado operates behind specific proxies that understand these non-standard characters diversely, mostly observed in earlier versions of 'haproxy'; however, the latest version remains unaffected. Details: Tornado utilizes the 'int' constructor to decipher the 'Content-Length' headers and chunk lengths in the locations mentioned below: `tornado/http1connection.py:445` Python3 code: self._expected_content_remaining = int(headers["Content-Length"]) `tornado/http1connection.py:621` Python3 code: content_length = int(headers["Content-Length"]) `tornado/http1connection.py:671` Python3 code: chunk_len = int(chunk_len_str.strip(), 16) Notably, though the equation `int("0_0")` equates to `int("+0")`, `int("-0")`, and `int("0")`, using the 'int' constructor as a strategy for validating and parsing strings containing ASCII digits only is proven inadequate. |
tornado | 6.0.3 | <=6.4.0 |
show When Tornado receives a request with two Transfer-Encoding: chunked headers, it ignores them both. This enables request smuggling when Tornado is deployed behind a proxy server that emits such requests. Pound does this. |
tornado | 6.0.3 | <6.4.2 |
show Tornado web framework affected versions contain a performance vulnerability in their HTTP cookie parser. When processing specially crafted malicious cookie headers, the parser's algorithm can exhibit quadratic time complexity. Since this parsing happens in the main event loop thread, it can cause the server to become unresponsive and block the processing of other incoming requests due to excessive CPU usage. |
tornado | 6.0.3 | <6.3.2 |
show Tornado 6.3.2 includes a fix for CVE-2023-28370: Open redirect vulnerability in Tornado versions 6.3.1 and earlier allows a remote unauthenticated attacker to redirect a user to an arbitrary web site and conduct a phishing attack by having user access a specially crafted URL. |
tornado | 6.0.3 | <6.4.1 |
show Tornado’s curl_httpclient.CurlAsyncHTTPClient class is vulnerable to CRLF (carriage return/line feed) injection in the request headers. |
notebook | 5.7.8 | >=0,<6.4.10 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.9, unauthorized actors can access sensitive information from server logs. Anytime a 5xx error is triggered, the auth cookie and other header values are recorded in Jupyter server logs by default. Considering these logs do not require root access, an attacker can monitor these logs, steal sensitive auth/cookie information, and gain access to the Jupyter server. Jupyter notebook version 6.4.x contains a patch for this issue. There are currently no known workarounds. |
notebook | 5.7.8 | >=0,<6.4.12 |
show Jupyter Notebook is a web-based notebook environment for interactive computing. Prior to version 6.4.12, authenticated requests to the notebook server with `ContentsManager.allow_hidden = False` only prevented listing the contents of hidden directories, not accessing individual hidden files or files in hidden directories (i.e. hidden files were 'hidden' but not 'inaccessible'). This could lead to notebook configurations allowing authenticated access to files that may reasonably be expected to be disallowed. Because fully authenticated requests are required, this is of relatively low impact. But if a server's root directory contains sensitive files whose only protection from the server is being hidden (e.g. `~/.ssh` while serving $HOME), then any authenticated requests could access files if their names are guessable. Such contexts also necessarily have full access to the server and therefore execution permissions, which also generally grants access to all the same files. So this does not generally result in any privilege escalation or increase in information access, only an additional, unintended means by which the files could be accessed. Version 6.4.12 contains a patch for this issue. There are currently no known workarounds. https://github.com/jupyter/notebook/security/advisories/GHSA-v7vq-3x77-87vg |
notebook | 5.7.8 | >=0,<5.7.11 , >=6.0.0,<6.4.1 |
show The Jupyter notebook is a web-based notebook environment for interactive computing. In affected versions untrusted notebook can execute code on load. Jupyter Notebook uses a deprecated version of Google Caja to sanitize user inputs. A public Caja bypass can be used to trigger an XSS when a victim opens a malicious ipynb document in Jupyter Notebook. The XSS allows an attacker to execute arbitrary code on the victim computer using Jupyter APIs. |
notebook | 5.7.8 | <6.0.2 |
show Notebook 6.0.2 updates its dependency 'JQuery' to v3.5.0 to include a security fix. |
notebook | 5.7.8 | <6.1.5 |
show Notebook 6.1.5 fixes open redirect vulnerability 'GHSA-c7vm-f5p4-8fqh'. See: CVE-2020-26215. https://github.com/advisories/GHSA-c7vm-f5p4-8fqh https://github.com/jupyter/notebook/pull/5874 |
pygments | 2.4.2 | <2.15.0 |
show Pygments 2.15.0 includes a fix for CVE-2022-40896: The regular expressions used when parsing Smithy, SQL/SQL+Jinja, and Java properties files were discovered to be vulnerable. As a result, pygmentizing a maliciously-crafted file of these kinds would have resulted in high resources consumption or crashing of the application. https://pyup.io/posts/pyup-discovers-redos-vulnerabilities-in-top-python-packages-part-2 |
pygments | 2.4.2 | >=1.5,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-20270: An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. |
pygments | 2.4.2 | >=1.1,<2.7.4 |
show Pygments 2.7.4 includes a fix for CVE-2021-27291: In pygments 1.1+, fixed in 2.7.4, the lexers used to parse programming languages rely heavily on regular expressions. Some of the regular expressions have exponential or cubic worst-case complexity and are vulnerable to ReDoS. By crafting malicious input, an attacker can cause a denial of service. |
gunicorn | 19.9.0 | <23.0.0 |
show Gunicorn version 21.2.0 does not properly validate the value of the 'Transfer-Encoding' header as specified in the RFC standards, which leads to the default fallback method of 'Content-Length,' making it vulnerable to TE.CL request smuggling. This vulnerability can lead to cache poisoning, data exposure, session manipulation, SSRF, XSS, DoS, data integrity compromise, security bypass, information leakage, and business logic abuse. |
gunicorn | 19.9.0 | <22.0.0 |
show Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
gunicorn | 19.9.0 | <21.2.0 |
show A time-based vulnerability in Gunicorn affected versions allows an attacker to disrupt service by manipulating the system clock, causing premature worker timeouts and potential denial-of-service (DoS) conditions. The issue stems from the use of time.time() in the worker timeout logic, which can be exploited if an attacker gains the ability to change the system time. |
gunicorn | 19.9.0 | <19.10.0 , >=20.0.0,<20.0.1 |
show Gunicorn 20.0.1 fixes chunked encoding support to prevent http request smuggling attacks. https://github.com/benoitc/gunicorn/issues/2176 https://github.com/p4k03n4t0r/http-request-smuggling#request-smuggling-using-mitmproxy-and-gunicorn |
nbconvert | 5.5.0 | <6.5.1 |
show The GitHub Security Lab discovered sixteen ways to exploit a cross-site scripting vulnerability in nbconvert. When using nbconvert to generate an HTML version of a user-controllable notebook, it is possible to inject arbitrary HTML which may lead to cross-site scripting (XSS) vulnerabilities if these HTML notebooks are served by a web server (eg: nbviewer). https://github.com/jupyter/nbconvert/security/advisories/GHSA-9jmq-rx5f-8jwq |
ipywidgets | 7.5.0 | <8.0.0rc2 |
show Ipywidgets 8.0.0rc2 makes descriptions plaintext by default for security. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
ipywidgets | 7.5.0 | <8.0.0 |
show Ipywidgets 8.0.0 sanitizes descriptions by default. https://github.com/jupyter-widgets/ipywidgets/pull/2785 |
jupyter-core | 4.5.0 | >=0,<4.11.2 |
show Jupyter Core is a package for the core common functionality of Jupyter projects. Jupyter Core prior to version 4.11.2 contains an arbitrary code execution vulnerability in 'jupyter_core' that stems from 'jupyter_core' executing untrusted files in CWD. This vulnerability allows one user to run code as another. |
prompt-toolkit | 2.0.9 | <3.0.13 |
show Prompt-toolkit 3.0.13 fixes a race condition in `ThreadedHistory` which could lead to a deadlock. https://github.com/prompt-toolkit/python-prompt-toolkit/commit/99092a8c6d4b411645ac4b84d504e5226e7eebb8#diff-48c0ff10dc3990285d19b3f54e6bfec763089ba1229dc6f9e88463a1046adad7R163 |
https://pyup.io/repos/github/BarthJr/eventex/python-3-shield.svg
[](https://pyup.io/repos/github/BarthJr/eventex/)
.. image:: https://pyup.io/repos/github/BarthJr/eventex/python-3-shield.svg :target: https://pyup.io/repos/github/BarthJr/eventex/ :alt: Python 3
<a href="https://pyup.io/repos/github/BarthJr/eventex/"><img src="https://pyup.io/repos/github/BarthJr/eventex/shield.svg" alt="Python 3" /></a>
!https://pyup.io/repos/github/BarthJr/eventex/python-3-shield.svg(Python 3)!:https://pyup.io/repos/github/BarthJr/eventex/
{<img src="https://pyup.io/repos/github/BarthJr/eventex/python-3-shield.svg" alt="Python 3" />}[https://pyup.io/repos/github/BarthJr/eventex/]
https://pyup.io/repos/github/BarthJr/eventex/shield.svg
[](https://pyup.io/repos/github/BarthJr/eventex/)
.. image:: https://pyup.io/repos/github/BarthJr/eventex/shield.svg :target: https://pyup.io/repos/github/BarthJr/eventex/ :alt: Updates
<a href="https://pyup.io/repos/github/BarthJr/eventex/"><img src="https://pyup.io/repos/github/BarthJr/eventex/shield.svg" alt="Updates" /></a>
!https://pyup.io/repos/github/BarthJr/eventex/shield.svg(Updates)!:https://pyup.io/repos/github/BarthJr/eventex/
{<img src="https://pyup.io/repos/github/BarthJr/eventex/shield.svg" alt="Updates" />}[https://pyup.io/repos/github/BarthJr/eventex/]